Close Association of Azospirillum and Diazotrophic Rods with Different Root Zones of Kallar Grass

Author:

Reinhold Barbara1,Hurek Thomas1,Niemann Ernst-Georg1,Fendrik Istvan1

Affiliation:

1. Institute of Biophysics, University of Hannover, D-3000 Hanover, Federal Republic of Germany

Abstract

The populations of diazotrophic and nondiazotrophic bacteria were estimated in the endorhizosphere and on the rhizoplane of Kallar grass ( Leptochloa fusca ) and in nonrhizosphere soil. Microaerophilic diazotrophs were counted by the most-probable-number method, using two semisolid malate media, one of them adapted to the saline-sodic Kallar grass soil. Plate counts of aerobic heterotrophic bacteria were done on nutrient agar. The dominating N 2 -fixing bacteria were differentiated by morphological, serological, and physiological criteria. Isolates, which could not be assigned to a known species, were shown to fix nitrogen unequivocally by 15 N 2 incorporation. On the rhizoplane we found 2.0 × 10 7 diazotrophs per g (dry weight) of root, which consisted in equal numbers of Azospirillum lipoferum and Azospirillum -like bacteria showing characteristics different from those of known Azospirillum species. Surface sterilization by NaOCI treatment effectively reduced the rhizoplane population, so that bacteria released by homogenization of roots could be regarded as endorhizosphere bacteria. Azospirillum spp. were not detected in the endorhizosphere, but diazotrophic, motile, straight rods producing a yellow pigment occurred with 7.3 × 10 7 cells per g (dry weight) of root in the root interior. In nonrhizosphere soil we found 3.1 × 10 4 nitrogen-fixing bacteria per g. Diazotrophs were preferentially enriched in the Kallar grass rhizosphere. In nonrhizosphere soil they made up 0.2% of the total aerobic heterotrophic microflora, on the rhizoplane they made up 7.1%, and in the endorhizosphere they made up 85%. Owing to high numbers in and on roots and their preferential enrichment, we concluded that diazotrophs are in close association with Kallar grass. They formed entirely different populations on the rhizoplane and in the endorhizosphere.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3