Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins

Author:

Ou Xiuyuan1,Zheng Wangliang1,Shan Yiwei1,Mu Zhixia1,Dominguez Samuel R.2,Holmes Kathryn V.3,Qian Zhaohui1

Affiliation:

1. MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

2. Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA

3. Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA

Abstract

ABSTRACT The fusion peptides (FP) play an essential role in fusion of viral envelope with cellular membranes. The location and properties of the FPs in the spike (S) glycoproteins of different coronaviruses (CoV) have not yet been determined. Through amino acid sequence analysis of S proteins of representative CoVs, we identified a common region as a possible FP (pFP) that shares the characteristics of FPs of class I viral fusion proteins, including high Ala/Gly content, intermediate hydrophobicity, and few charged residues. To test the hypothesis that this region contains the CoV FP, we systemically mutated every residue in the pFP of Middle East respiratory syndrome betacoronavirus (MERS-CoV) and found that 11 of the 22 residues in the pFP (from G953 to L964, except for A956) were essential for S protein-mediated cell-cell fusion and virus entry. The synthetic MERS-CoV pFP core peptide ( 955 IAGVGWTAGL 964 ) induced extensive fusion of liposome membranes, while mutant peptide failed to induce any lipid mixing. We also selectively mutated residues in pFPs of two other β-CoVs, severe acute respiratory syndrome coronavirus (SARS-CoV) and mouse hepatitis virus (MHV). Although the amino acid sequences of these two pFPs differed significantly from that of MERS-CoV and each other, most of the pFP mutants of SARS-CoV and MHV also failed to mediate membrane fusion, suggesting that these pFPs are also the functional FPs. Thus, the FPs of 3 different lineages of β-CoVs are conserved in location within the S glycoproteins and in their functions, although their amino acid sequences have diverged significantly during CoV evolution. IMPORTANCE Within the class I viral fusion proteins of many enveloped viruses, the FP is the critical mediator of fusion of the viral envelope with host cell membranes leading to virus infection. FPs from within a virus family, like influenza viruses or human immunodeficiency viruses (HIV), tend to share high amino acid sequence identity. In this study, we determined the location and amino acid sequences of the FPs of S glycoproteins of 3 β-CoVs, MERS-CoV, SARS-CoV, and MHV, and demonstrated that they were essential for mediating cell-cell fusion and virus entry. Interestingly, in marked contrast to the FPs of influenza and HIV, the primary amino acid sequences of the FPs of β-CoVs in 3 different lineages differed significantly. Thus, during evolution the FPs of β-CoVs have diverged significantly in their primary sequences while maintaining the same essential biological functions. Our findings identify a potential new target for development of drugs against CoVs.

Funder

Chinese Science and Technology Key Projects

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference74 articles.

1. Masters PS, Perlman S. 2013. Coronaviridae, p 825–858. In Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (ed), Fields virology, 6th ed, vol 1. Lippincott Williams & Wilkins, Philadelphia, PA.

2. King AMQ Adams MJ Carstens EB Lefkowitz EJ (ed). 2011. Virus taxonomy. Classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press San Diego CA. http://ictvonline.org/virusTaxonomy.asp?version=2011.

3. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry

4. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus

5. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3