Affiliation:
1. Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
Abstract
ABSTRACT
A natural hepatitis B virus (HBV) variant associated with seroconversion from HBeAg to anti-HBe antibody contains two nucleotide substitutions (A1764T and G1766A) in the proximal nuclear hormone receptor binding site in the nucleocapsid promoter. These nucleotide substitutions prevent the binding of the retinoid X receptor α (RXRα)–peroxisome proliferator-activated receptor α (PPARα) heterodimer without greatly altering the efficiency of binding of hepatocyte nuclear factor 4 (HNF4) to this recognition sequence. In addition, these nucleotide substitutions create a new binding site for HNF1. Analysis of HBV transcription and replication in nonhepatoma cells indicates that RXRα-PPARα heterodimers support higher levels of pregenomic RNA transcription from the wild-type than from the variant nucleocapsid promoter, producing higher levels of wild-type than of variant replication intermediates. In contrast, HNF4 supports higher levels of pregenomic RNA transcription from the variant than from the wild-type nucleocapsid promoter, producing higher levels of variant than of wild-type replication intermediates. HNF1 can support variant virus replication at a low level but is unable to support replication of the wild-type HBV genome. These observations indicate that the replication of wild-type and variant viruses can be differentially regulated by the liver-specific transcription factors that bind to the proximal nuclear hormone receptor binding site of the nucleocapsid promoter. Differential regulation of viral replication may be important in the selection of specific viral variants as a result of an antiviral immune response.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献