A Predicted Secondary Structural Domain within the Internal Ribosome Entry Site of Echovirus 12 Mediates a Cell-Type-Specific Block to Viral Replication

Author:

Bradrick Shelton S.1,Lieben Elizabeth A.1,Carden Bruce M.1,Romero José R.12

Affiliation:

1. Department of Pathology and Microbiology, University of Nebraska Medical Center,1 and

2. Combined Division of Pediatric Infectious Diseases, University of Nebraska Medical Center and Creighton University,2 Omaha, Nebraska

Abstract

ABSTRACT The enterovirus 5′ nontranslated region (NTR) contains an internal ribosome entry site (IRES), which facilitates translation initiation of the viral open reading frame in a 5′ (m 7 GpppN) cap-independent manner, and cis -acting signals for positive-strand RNA replication. For several enteroviruses, the 5′ NTR has been shown to determine the virulence phenotype. We have constructed a chimera consisting of the putative IRES element from the Travis strain of echovirus 12 (ECV12), a wild-type, relatively nonvirulent human enterovirus, exchanged with the homologous region of a full-length infectious clone of coxsackievirus B3 (CBV3). The resulting chimera, known as ECV12(5′NTR)CBV3, replicates similarly to CBV3 in human and simian cell lines yet, unlike CBV3, is completely restricted for growth on two primary murine cell lines at 37°C. By utilizing a reverse-genetics approach, the growth restriction phenotype was localized to the predicted stem-loop II within the IRES of ECV12. In addition, a revertant of ECV12(5′NTR)CBV3 was isolated which possessed three transition mutations and had restored capability for replication in the utilized murine cell lines. Assays for cardiovirulence indicated that the ECV12 IRES is responsible for a noncardiovirulent phenotype in a murine model for acute myocarditis. The results indicate that the 5′ NTRs of ECV12 and CBV3 exhibit variable intracellular requirements for function and serve as secondary determinants of tissue or species tropism.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3