Effects of Mutations within the Herpes Simplex Virus Type 1 DNA Encapsidation Signal on Packaging Efficiency

Author:

Hodge Paul D.1,Stow Nigel D.1

Affiliation:

1. MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom

Abstract

ABSTRACT The cis -acting signals required for cleavage and encapsidation of the herpes simplex virus type 1 genome lie within the terminally redundant region or a sequence. The a sequence is flanked by short direct repeats (DR1) containing the site of cleavage, and quasi-unique regions, Uc and Ub, occupy positions adjacent to the genomic L and S termini, respectively, such that a novel fragment, Uc-DR1-Ub, is generated upon ligation of the genomic ends. The Uc-DR1-Ub fragment can function as a minimal packaging signal, and motifs have been identified within Uc and Ub that are conserved near the ends of other herpesvirus genomes ( pac 2 and pac 1, respectively). We have introduced deletion and substitution mutations within the pac regions of the Uc-DR1-Ub fragment and assessed their effects on DNA packaging in an amplicon-based transient transfection assay. Within pac 2, mutations affecting the T tract had the greatest inhibitory effect, but deletion of sequences on either side of this element also reduced packaging, suggesting that its position relative to other sequences within the Uc-DR1-Ub fragment is likely to be important. No single region essential for DNA packaging was detected within pac 1. However, mutants lacking the G tracts on either side of the pac 1 T-rich motif exhibited a reduced efficiency of serial propagation, and alteration of the sequences between DR1 and the pac 1 T element also resulted in defective generation of Ub-containing terminal fragments. The data are consistent with a model in which initiation and termination of packaging are specified by sequences within Uc and Ub, respectively.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3