DNA Replication Efficiency Depends on Transcription Factor-Binding Sites

Author:

Turner William J.1,Woodworth Mary E.1

Affiliation:

1. Department of Microbiology, Miami University, Oxford, Ohio 45056

Abstract

ABSTRACT Naturally arising variants of simian virus 40 (SV40), generated by serial passage of the virus at high multiplicities of infection, provide important insight into the role of transcription factor-binding sites in enhancing DNA replication. Although the variants that arise from numerous recombination events are the result of selective pressure to replicate more efficiently than the other variants in the infection, there is no transcription pressure. Therefore, it is interesting that a minimum of two viral Sp1 transcription factor-binding sites are retained and that host AP-1 and NF-1 transcription factor-binding sites are incorporated into the 100-bp regulatory region that maximizes DNA replication in these variants. We cotransfected COS-1 cells (that provide viral large T antigen for DNA replication) to examine the effect of transcription factor-binding sites on the replication of plasmid constructs that contain the SV40 origin of replication ( ori ). The level of relative replication efficiency (RRE) depends on the number and type of transcription factor-binding sites. Replication increases as the number of transcription factor-binding sites increases within the regulatory region of the variants; AP-1 sites are more effective than NF-1 transcription factor-binding sites. Competition between constructs in transfections magnifies the difference in their RREs. The results indicate that transcription factor-binding sites play an important role in enhancing DNA replication.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3