Structure of In31, a bla IMP -Containing Pseudomonas aeruginosa Integron Phyletically Related to In5, Which Carries an Unusual Array of Gene Cassettes

Author:

Laraki Nezha1,Galleni Moreno1,Thamm Iris1,Riccio Maria Letizia2,Amicosante Gianfranco3,Frère Jean-Marie1,Rossolini Gian Maria2

Affiliation:

1. Laboratoire d’Enzymologie & Centre d’Ingénierie des Protéines, Institut de Chimie, Université de Liège, B-4000 Liège, Belgium,1

2. Dipartimento di Biologia Molecolare, Sezione di Microbiologia, Università di Siena, I-53100 Siena,2 and

3. Dipartimento di Scienze & Technologie Biomediche, Università dell’Aquila, I-67100 L’Aquila, Italy3

Abstract

ABSTRACT The location and environment of the acquired bla IMP gene, which encodes the IMP-1 metallo-β-lactamase, were investigated in a Japanese Pseudomonas aeruginosa clinical isolate (isolate 101/1477) that produced the enzyme. In this isolate, bla IMP was carried on a 36-kb plasmid, and similar to the identical alleles found in Serratia marcescens and Klebsiella pneumoniae clinical isolates, it was located on a mobile gene cassette inserted into an integron. The entire structure of this integron, named In31, was determined. In31 is a class 1 element belonging to the same group of defective transposon derivatives that originated from Tn 402 -like ancestors such as In0, In2, and In5. The general structure of In31 appeared to be most closely related to that of In5 from pSCH884, suggesting a recent common phylogeny for these two elements. In In31, the bla IMP cassette is the first of an array of five gene cassettes that also includes an aacA4 cassette and three original cassettes that have never been described in other integrons. The novel cassettes carry, respectively, (i) a new chloramphenicol acetyltransferase-encoding allele of the catB family, (ii) a qac allele encoding a new member of the small multidrug resistance family of proteins, and (iii) an open reading frame encoding a protein of unknown function. All the resistance genes carried on cassettes inserted in In31 were found to be functional in decreasing the in vitro susceptibilities of host strains to the corresponding antimicrobial agents.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3