Affiliation:
1. Department of Microbiology, Sterling-Winthrop Research Institute, Rensselaer, New York 12144
Abstract
Addition of certain ribonucleosides to exponentially growing cultures of
Escherichia coli
increased the extent of thymidine incorporation. The prolonged uptake of thymidine was correlative with the ability of these ribonucleosides to prevent the degradation of thymidine. In addition to protecting thymidine, uridine reversed partially (70 to 80%) the inhibition of deoxyribonucleic acid (DNA) synthesis in thymineless auxotrophs by cytosine arabinoside, hydroxyurea, and nalidixic acid. This reversal was selective for auxotrophic strains since no reversal of inhibition by uridine was observed in any of the prototrophic strains examined. In the presence of uridine, the rapid assimilation of thymidine by prototrophic and auxotrophic strains was prevented and the rate of DNA synthesis became a function of the available exogenous thymidine. Under these conditions, prototrophic strains accumulated equivalent amounts of thymidine into the acid-soluble (pool) and acid-insoluble (DNA) cell fractions. In contrast, 95 to 98% of the thymidine taken up by auxotrophs was found in the acid-insoluble (DNA) cell fraction. The results suggest that different mechanisms for DNA synthesis exist in auxotrophs and prototrophs. Based on these observed differences, some possible mechanisms for the selective reversal of the inhibition of DNA synthesis in auxotrophs are discussed.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献