Control of bacteriochlorophyll accumulation by light in Rhodobacter capsulatus

Author:

Biel A J

Abstract

The accumulation of bacteriochlorophyll in Rhodobacter capsulatus grown either anaerobically or under low aeration is repressed by bright light. It has been proposed that an intact photosynthetic membrane system is required for light-mediated regulation. This was tested by measuring bacteriochlorophyll accumulation in various mutant strains grown under 3% oxygen. Mutants lacking either the reaction center and B875 complexes or the B800-850 complex exhibited normal regulation of bacteriochlorophyll accumulation by light, suggesting that neither photosynthesis nor the photosynthetic membrane system is involved in light-mediated regulation. Bright light did not reduce transcription from the bchA, bchC, bchE, or bchF gene. Neither a bch+ strain nor bchG or bchH mutants accumulated greater than normal amounts of any bacteriochlorophyll precursor when grown in bright light, indicating that carbon flow over the bacteriochlorophyll biosynthetic pathway was not being regulated by light intensity. When exposed to bright light, R. capsulatus converted aminolevulinate into a colorless compound with Rf values very similar to those of bacteriochlorophyll. These results suggest that in strains grown under low aeration, light intensity controls bacteriochlorophyll accumulation, but does not control bacteriochlorophyll synthesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3