Abstract
In previous work (E. S. Tessman and P. K. Peterson, J. Bacteriol. 163:677-687 and 688-695, 1985), we isolated many novel protease-constitutive (Prtc) recA mutants, i.e., mutants in which the RecA protein was always in the protease state without the usual need for DNA damage to activate it. Most Prtc mutants were recombinase positive and were designated Prtc Rec+; only a few Prtc mutants were recombinase negative, and those were designated Prtc Rec-. We report changes in DNA sequence of the recA gene for several of these mutants. The mutational changes clustered at three regions on the linear RecA polypeptide. Region 1 includes amino acid residues 25 through 39, region 2 includes amino acid residues 157 through 184, and region 3 includes amino acid residues 298 through 301. The in vivo response of these Prtc mutants to different effectors suggests that the RecA effector-binding sites have been altered. In particular we propose that the mutations may define single-stranded DNA- and nucleoside triphosphate-binding domains of RecA, that polypeptide regions 1 and 3 comprise part of the single-stranded DNA-binding domain, and that polypeptide regions 2 and 3 comprise part of the nucleoside triphosphate-binding domain. The overlapping of single-stranded DNA- and nucleoside triphosphate-binding domains in region 3 can explain previously known complex allosteric effects. Each of four Prtc Rec- mutants sequenced was found to contain a single amino acid change, showing that the change of just one amino acid can affect both the protease and recombinase activities and indicating that the functional domains for these two activities of RecA overlap. A recA promoter-down mutation was isolated by its ability to suppress the RecA protease activity of one of our strong Prtc mutants.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献