Role of antibody and complement in the control of Encephalitozoon cuniculi infections by rabbit macrophages

Author:

Niederkorn J Y,Shadduck J A

Abstract

The capacity of mononuclear peritoneal macrophages to phagocytose Encephalitozoon cuniculi was tested in vitro. Normal rabbit serum or cell culture medium had little effect on the rate of removal of organisms by rabbit peritoneal macrophages. Treatment with immune rabbit serum or immune rabbit immunoglobulin G significantly (P less than 0.001) increased phagocytosis of E. cuniculi. Guinea pig complement was found to significantly (P less than 0.001) enhance the phagocytosis of antibody-treated E. cuniculi. With few exceptions, induced (peritoneal exudate) macrophages were no more effective than unstimulated (resident) macrophages in the phagocytosis of E. cuniculi. Secondary lysosomes labeled with ferritin were seen fusing with phagosomes containing immune rabbit serum-treated parasites. Phagosome-lysosome fusion was not observed when parasites were treated with either normal rabbit serum or culture medium. The results of the present study suggest a role for antibody enhancement of phagocytosis and intracellular killing as a mechanism of resistance to encephalitozoonosis in rabbits.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference39 articles.

1. Effect of normal and activated macrophages on Toxoplasma gondii;Anderson S.;J. Exp. Med.,1974

2. Specific antibody-dependent killing of Toxoplasma gondii by normal macrophages;Anderson S. E.;Clin. Exp. Immunol.,1976

3. Nosematosis: report of a canine case in the Republic of South Africa;Basson P. A.;J. S. Afr. Vet. Med. Assoc.,1966

4. Studies of the macrophage complement receptor. Alteration or receptor function upon macrophage activation;Bianco C.;J. Exp. Med.,1975

5. Detection of latent murine nosematosis and growth of Nosema cuniculi in cell cultures;Bismanis J. E.;Can. J. Microbiol.,1970

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3