Quantification of Soil-to-Plant Transport of Recombinant Nucleopolyhedrovirus: Effects of Soil Type and Moisture, Air Currents, and Precipitation

Author:

Fuxa James R.1,Richter Arthur R.1

Affiliation:

1. Department of Entomology, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803

Abstract

ABSTRACT Significantly more occlusion bodies (OB) of DuPont viral construct HzSNPV-LqhIT2, expressing a scorpion toxin, were transported by artificial rainfall to cotton plants from sandy soil (70:15:15 sand-silt-clay) than from silt (15:70:15) and significantly more from silt than from clay (15:15:70). The amounts transported by 5 versus 50 mm of precipitation were the same, and transport was zero when there was no precipitation. In treatments that included precipitation, the mean number of viable OB transported to entire, 25- to 35-cm-tall cotton plants ranged from 56 (clay soil, 5 mm of rain) to 226 (sandy soil, 50 mm of rain) OB/plant. In a second experiment, viral transport increased with increasing wind velocity (0, 16, and 31 km/h) and was greater in dry (−1.0 bar of matric potential) than in moist (−0.5 bar) soil. Wind transport was greater for virus in a clay soil than in silt or sand. Only 3.3 × 10 −7 (clay soil, 5 mm rain) to 1.3 × 10 −6 (sandy soil, 50 mm rain) of the OB in surrounding soil in experiment 1 or 1.1 × 10 −7 (−0.5 bar sandy soil, 16-km/h wind) to 1.3 × 10 −6 (−1.0 bar clay soil, 31-km/h wind) in experiment 2 were transported by rainfall or wind to cotton plants. This reduces the risk of environmental release of a recombinant nucleopolyhedrovirus (NPV), because only a very small proportion of recombinant virus in the soil reservoir is transported to vegetation, where it can be ingested by and replicate in new host insects.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3