Affiliation:
1. Department of Chemical Engineering, Center for Multiphase Environmental Research, Washington State University, Pullman, Washington 99164-2710
Abstract
ABSTRACT
The toxicity of copper [Cu(II)] to sulfate-reducing bacteria (SRB) was studied by using
Desulfovibrio desulfuricans
G20 in a medium (MTM) developed specifically to test metal toxicity to SRB (R. K. Sani, G. Geesey, and B. M. Peyton, Adv. Environ. Res. 5:269–276, 2001). The effects of Cu(II) toxicity were observed in terms of inhibition in total cell protein, longer lag times, lower specific growth rates, and in some cases no measurable growth. At only 6 μM, Cu(II) reduced the maximum specific growth rate by 25% and the final cell protein concentration by 18% compared to the copper-free control. Inhibition by Cu(II) of cell yield and maximum specific growth rate increased with increasing concentrations. The Cu(II) concentration causing 50% inhibition in final cell protein was evaluated to be 16 μM. A Cu(II) concentration of 13.3 μM showed 50% inhibition in maximum specific growth rate. These results clearly show significant Cu(II) toxicity to SRB at concentrations that are 100 times lower than previously reported. No measurable growth was observed at 30 μM Cu(II) even after a prolonged incubation of 384 h. In contrast, Zn(II) and Pb(II), at 16 and 5 μM, increased lag times by 48 and 72 h, respectively, but yielded final cell protein concentrations equivalent to those of the zinc- and lead-free controls. Live/dead staining, based on membrane integrity, indicated that while Cu(II), Zn(II), and Pb(II) inhibited growth, these metals did not cause a loss of
D. desulfuricans
membrane integrity. The results show that
D. desulfuricans
in the presence of Cu(II) follows a growth pattern clearly different from the pattern followed in the presence of Zn(II) or Pb(II). It is therefore likely that Cu(II) toxicity proceeds by a mechanism different from that of Zn(II) or Pb(II) toxicity.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
165 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献