Sphingomonas alaskensis Strain AFO1, an Abundant Oligotrophic Ultramicrobacterium from the North Pacific

Author:

Eguchi Mitsuru1,Ostrowski Martin2,Fegatella Fitri2,Bowman John3,Nichols David4,Nishino Tomohiko5,Cavicchioli Ricardo2

Affiliation:

1. Department of Fisheries, Kinki University, Nara 631-8505,1 and

2. School of Microbiology & Immunology, The University of New South Wales, Sydney, UNSW 2052,2 and

3. School of Agricultural Science3 and

4. Antarctic CRC,4 University of Tasmania, Hobart 7001, TAS, Australia

5. Ocean Research Institute, University of Tokyo, Nakano-ku, Tokyo 164-8639,5 Japan, and

Abstract

ABSTRACT Numerous studies have established the importance of picoplankton (microorganisms of ≤2 μm in length) in energy flow and nutrient cycling in marine oligotrophic environments, and significant effort has been directed at identifying and isolating heterotrophic picoplankton from the world's oceans. Using a method of diluting natural seawater to extinction followed by monthly subculturing for 12 months, a bacterium was isolated that was able to form colonies on solid medium. The strain was isolated from a 10 5 dilution of seawater where the standing bacterial count was 3.1 × 10 5 cells ml −1 . This indicated that the isolate was representative of the most abundant bacteria at the sampling site, 1.5 km from Cape Muroto, Japan. The bacterium was characterized and found to be ultramicrosized (less than 0.1 μm 3 ), and the size varied to only a small degree when the cells were starved or grown in rich media. A detailed molecular (16S rRNA sequence, DNA-DNA hybridization, G+C mol%, genome size), chemotaxonomic (lipid analysis, morphology), and physiological (resistance to hydrogen peroxide, heat, and ethanol) characterization of the bacterium revealed that it was a strain of Sphingomonas alaskensis . The type strain, RB2256, was previously isolated from Resurrection Bay, Alaska, and similar isolates have been obtained from the North Sea. The isolation of this species over an extended period, its high abundance at the time of sampling, and its geographical distribution indicate that it has the capacity to proliferate in ocean waters and is therefore likely to be an important contributor in terms of biomass and nutrient cycling in marine environments.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3