Multiple Propionyl Coenzyme A-Supplying Pathways for Production of the Bioplastic Poly(3-Hydroxybutyrate- co -3-Hydroxyvalerate) in Haloferax mediterranei

Author:

Han Jing1,Hou Jing12,Zhang Fan13,Ai Guomin1,Li Ming12,Cai Shuangfeng12,Liu Hailong12,Wang Lei1,Wang Zejian4,Zhang Siliang4,Cai Lei12,Zhao Dahe12,Zhou Jian1,Xiang Hua1

Affiliation:

1. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Beijing, China

3. Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China

4. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China

Abstract

ABSTRACT Haloferax mediterranei is able to accumulate the bioplastic poly(3-hydroxybutyrate- co -3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis of H. mediterranei genome indicated that this strain uses multiple pathways for propionyl-CoA biosynthesis, including the citramalate/2-oxobutyrate pathway, the aspartate/2-oxobutyrate pathway, the methylmalonyl-CoA pathway, and a novel 3-hydroxypropionate pathway. Cofeeding of pathway intermediates and inactivating pathway-specific genes supported that these four pathways were indeed involved in the biosynthesis of 3HV monomer. The novel 3-hydroxypropionate pathway that couples CO 2 assimilation with PHBV biosynthesis was further confirmed by analysis of 13 C positional enrichment in 3HV. Notably, 13 C metabolic flux analysis showed that the citramalate/2-oxobutyrate pathway (53.0% flux) and the 3-hydroxypropionate pathway (30.6% flux) were the two main generators of propionyl-CoA from glucose. In addition, genetic perturbation on the transcriptome of the Δ phaEC mutant (deficient in PHBV accumulation) revealed that a considerable number of genes in the four propionyl-CoA synthetic pathways were significantly downregulated. We determined for the first time four propionyl-CoA-supplying pathways for PHBV production in haloarchaea, particularly including a new 3-hydroxypropionate pathway. These results would provide novel strategies for the production of PHBV with controllable 3HV molar fraction.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3