Comparison of Cytomegalovirus Terminase Gene Mutations Selected after Exposure to Three Distinct Inhibitor Compounds

Author:

Chou Sunwen1

Affiliation:

1. Division of Infectious Diseases, Oregon Health and Science University, and Portland VA Health Care System, Portland, Oregon, USA

Abstract

ABSTRACT Letermovir, GW275175X (a benzimidazole), and tomeglovir (Bay38-4766) are chemically unrelated human cytomegalovirus (CMV) terminase complex inhibitors that have been tested in human subjects. UL56 gene mutations are the dominant pathway of letermovir resistance, while UL89 and UL56 mutations are known to confer benzimidazole resistance. This study compares the mutations elicited by the three inhibitors during in vitro CMV propagation. GW275175X consistently selected for UL89 D344E and sometimes selected for UL89 C347S, UL89 R351H, or UL56 Q204R. Tomeglovir consistently selected for UL89 V362M and sometimes selected for UL89 N329S, T350M, H389N, or N405D or UL56 L208M, E407D, H637Q, or V639M. Adding to known and novel UL56 mutations, letermovir occasionally selected for UL89 N320H, D344E, or M359I. Recombinant phenotyping confirmed that UL89 D344E conferred 9-fold resistance (an increased 50% effective concentration [EC 50 ]) for GW275175X and increased the letermovir and tomeglovir EC 50 s by 1.7- to 2.1-fold for the baseline virus and the UL56 Q204R, E237D, F261L, and M329T mutants. UL89 N320H and M359I conferred <2-fold letermovir resistance but 7-fold tomeglovir resistance; the N320H mutant was also 4-fold resistant to GW275175X. UL89 N329S conferred tomeglovir and letermovir cross-resistance. UL89 T350M conferred resistance to all three inhibitors. UL89 C347S conferred 27-fold GW275175X resistance. UL89 V362M and H389N conferred 98-fold and 29-fold tomeglovir resistance, respectively, without conferring cross-resistance. Thus, characteristic UL89 mutations confer substantial resistance to GW275175X and tomeglovir and are an uncommon accessory pathway of letermovir resistance. Instances of moderate cross-resistance and the proximity of the selected UL89 and UL56 mutations suggest targeting of a similar terminase functional locus involving UL56 and UL89 interaction.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3