Affiliation:
1. Department of General Dermatology, SANDOZ Research Institute, Vienna, Austria.
Abstract
Squalene epoxidase (SE) is the primary target of the allylamine antimycotic agents terbinafine and naftifine and also of the thiocarbamates. Although all of these drugs are employed primarily in dermatological therapy, SE from dermatophyte fungi has not been previously investigated. We report here the biochemical characterization of SE activity from Trichophyton rubrum and the effects of terbinafine and other inhibitors. Microsomal SE activity from T. rubrum was not dependent on soluble cytoplasmic factors but had an absolute requirement for NADPH or NADH and was stimulated by flavin adenine dinucleotide. Kinetic analyses revealed that under optimal conditions the Km for squalene was 13 microM and its Vmax was 0.71 nmol/h/mg of protein. Terbinafine was the most potent inhibitor tested, with a 50% inhibitory concentration (IC50) of 15.8 nM. This inhibition was noncompetitive with regard to the substrate squalene. A structure-activity relationship study with some analogs of terbinafine indicated that the tertiary amino structure of terbinafine was crucial for its high potency, as well as the tert-alkyl side chain. Naftifine had a lower potency (IC50, 114.6 nM) than terbinafine. Inhibition was also demonstrated by the thiocarbamates tolciclate (IC50, 28.0 nM) and tolnaftate (IC50, 51.5 nM). Interestingly, the morpholine amorolfine also displayed a weak but significant effect (IC50, 30 microM). T. rubrum SE was only slightly more sensitive (approximately twofold) to terbinafine inhibition than was the Candida albicans enzyme. Therefore, this difference cannot fully explain the much higher susceptibility (> or = 100-fold) of dermatophytes than of yeasts to this drug. The sensitivity to terbinafine of ergosterol biosynthesis in whole cells of T. rubrum (IC50, 1.5 nM) is 10-fold higher than that of SE activity, suggesting that the drug accumulates in the fungus.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献