Contact-Dependent Growth Inhibition Causes Reversible Metabolic Downregulation in Escherichia coli

Author:

Aoki S. K.1,Webb J. S.1,Braaten B. A.1,Low D. A.1

Affiliation:

1. Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106

Abstract

ABSTRACT Contact-dependent growth inhibition (CDI) is a mechanism identified in Escherichia coli by which bacteria expressing two-partner secretion proteins encoded by cdiA and cdiB bind to BamA in the outer membranes of target cells and inhibit their growth. A third gene in the cluster, cdiI , encodes a small protein that is necessary and sufficient to confer immunity to CDI, thereby preventing cells expressing the cdiBA genes from inhibiting their own growth. In this study, the cdiI gene was placed under araBAD promoter control to modulate levels of the immunity protein and thereby induce CDI by removal of arabinose. This CDI autoinhibition system was used for metabolic analyses of a single population of E. coli cells undergoing CDI. Contact-inhibited cells showed altered cell morphology, including the presence of filaments. Notably, CDI was reversible, as evidenced by resumption of cell growth and normal cellular morphology following induction of the CdiI immunity protein. Recovery of cells from CDI also required an energy source. Cells undergoing CDI showed a significant, reversible downregulation of metabolic parameters, including aerobic respiration, proton motive force (Δp), and steady-state ATP levels. It is unclear whether the decrease in respiration and/or Δp is directly involved in growth inhibition, but a role for ATP in the CDI mechanism was ruled out using an atp mutant. Consistent with the observed decrease in Δp, the phage shock response was induced in cells undergoing CDI but not in recovering cells, based on analysis of levels of pspA mRNA.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3