Removal of a Single α-Tubulin Gene Intron Suppresses Cell Cycle Arrest Phenotypes of Splicing Factor Mutations in Saccharomyces cerevisiae

Author:

Burns C. Geoffrey12,Ohi Ryoma12,Mehta Sapna12,O’Toole Eileen T.3,Winey Mark4,Clark Tyson A.5,Sugnet Charles W.5,Ares Manuel5,Gould Kathleen L.12

Affiliation:

1. Howard Hughes Medical Institute

2. Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

3. Boulder Laboratory for 3D Fine Structure

4. Department of Molecular, Cellular, and Developmental Biology, University of Colorado—Boulder, Boulder, Colorado 80309-0347

5. Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064

Abstract

ABSTRACT Genetic and biochemical studies of Schizosaccharomyces pombe and Saccharomyces cerevisiae have identified gene products that play essential functions in both pre-mRNA splicing and cell cycle control. Among these are the conserved, Myb-related CDC5 (also known as Cef1p in S. cerevisiae ) proteins. The mechanism by which loss of CDC5/Cef1p function causes both splicing and cell cycle defects has been unclear. Here we provide evidence that cell cycle arrest in a new temperature-sensitive CEF1 mutant, cef1-13 , is an indirect consequence of defects in pre-mRNA splicing. Although cef1-13 cells harbor global defects in pre-mRNA splicing discovered through intron microarray analysis, inefficient splicing of the α-tubulin-encoding TUB1 mRNA was considered as a potential cause of the cef1-13 cell cycle arrest because cef1-13 cells arrest uniformly at G 2 /M with many hallmarks of a defective microtubule cytoskeleton. Consistent with this possibility, cef1-13 cells possess reduced levels of total TUB1 mRNA and α-tubulin protein. Removing the intron from TUB1 in cef1-13 cells boosts TUB1 mRNA and α-tubulin expression to near wild-type levels and restores microtubule stability in the cef1-13 mutant. As a result, cef1-13 tub1 Δ i cells progress through mitosis and their cell cycle arrest phenotype is alleviated. Removing the TUB1 intron from two other splicing mutants that arrest at G 2 /M, prp17 Δ and prp22-1 strains, permits nuclear division, but suppression of the cell cycle block is less efficient. Our data raise the possibility that although cell cycle arrest phenotypes in prp mutants can be explained by defects in pre-mRNA splicing, the transcript(s) whose inefficient splicing contributes to cell cycle arrest is likely to be prp mutant dependent.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3