Affiliation:
1. Department of Molecular Genetics, Ohio State University, Columbus 43210.
Abstract
Forty homolog-scanning (double-reciprocal-crossover) mutant proteins of two Bacillus thuringiensis delta-endotoxin genes (cryIAa and cryIAc) were examined for potential structural alterations by a series of proteolytic assays. Three groups of mutants could be identified. Group 1, consisting of 13 mutants, showed no delta-endotoxin present during overexpression conditions in Escherichia coli (48 h at 37 degrees C, with a ptac promoter). These mutants produced full-sized delta-endotoxin detectable by polyacrylamide gel electrophoresis with Coomassie blue staining or Western immunoanalysis after 24 h of growth but not after 48 h, suggesting sensitivity to intracellular proteases. Group 2 consisted of 13 mutants that produced stable delta-endotoxins that were completely digested by 2% bovine trypsin. In contrast, native delta-endotoxin produces a 65,000-Da trypsin-resistant peptide, which is the active toxin. Group 3 mutants expressed delta-endotoxin and trypsin-stable toxins, similar to the wild type. In this study, 12 group 3 mutant toxins were compared with wild type toxins by thermolysin digestion at a range of temperatures. The two wild-type toxins exhibited significant differences in thermolysin digestion midpoints. Among the group 3 mutants, most possessed significantly different protein stabilities relative to their parental toxins. Two of the group 3 mutants were observed to have exchanged the thermolysin sensitivity properties of the parental toxins.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献