An HMG Protein, Hmo1, Associates with Promoters of Many Ribosomal Protein Genes and throughout the rRNA Gene Locus in Saccharomyces cerevisiae

Author:

Hall Daniel B.1,Wade Joseph T.1,Struhl Kevin1

Affiliation:

1. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115

Abstract

ABSTRACT HMG proteins are architectural proteins that bind to DNA with low sequence specificity, but little is known about their genomic location and biological functions. Saccharomyces cerevisiae encodes 10 HMG proteins, including Hmo1, which is important for maximal transcription of rRNA. Here we use chromatin immunoprecipitation coupled with microarray analysis to determine the genome-wide association of Hmo1. Unexpectedly, Hmo1 binds strongly to the promoters of most ribosomal protein (RP) genes and to a number of other specific genomic locations. Hmo1 binding to RP promoters requires Rap1 and (to a lesser extent) Fhl1, proteins that also associate with RP promoters. Hmo1, like Fhl1 and Ifh1, typically associates with an IFHL motif in RP promoters, but deletion of the IFHL motif has a very modest effect on Hmo1 binding. Surprisingly, loss of Hmo1 abolishes binding of Fhl1 and Ifh1 to RP promoters but does not significantly affect the level of transcriptional activity. These results suggest that Hmo1 is required for the assembly of transcription factor complexes containing Fhl1 and Ifh1 at RP promoters and that proteins other than Fhl1 and Ifh1 also play an important role in RP transcription. Lastly, like mammalian UBF, Hmo1 associates at many locations throughout the rRNA gene locus, and it is important for processing of rRNA in addition to its role in rRNA transcription. We speculate that Hmo1 has a role in coordinating the transcription of rRNA and RP genes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference44 articles.

1. Agresti, A., and M. E. Bianchi. 2003. HMGB proteins and gene expression. Curr. Opin. Genet. Dev.13:170-178.

2. Alekseev, S. Y., S. V. Kovaltsova, I. V. Fedorova, L. M. Gracheva, T. A. Evstukhina, V. T. Peshekhonov, and V. G. Korolev. 2002. HSM2 (HMO1) gene participates in mutagenesis control in yeast Saccharomyces cerevisiae. DNA Repair1:287-297.

3. Aparicio, O. M., J. V. Geisberg, and K. Struhl. 2004. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo, p. 21.3.1-21.3.17. In F. A. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology. John Wiley & Sons, New York, N.Y.

4. Regulation of DNA-Dependent Activities by the Functional Motifs of the High-Mobility-Group Chromosomal Proteins

5. Bustin, M. 2001. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem. Sci.26:152-153.

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3