Author:
Biggart N W,Gallick G E,Murphy E C
Abstract
Determination of the mutagenic effects of carcinogenic nickel compounds has been difficult because, like many metals, nickel is poorly or nonmutagenic in procaryotic mutagenicity assays. We attempted to characterize nickel-induced genetic lesions by assessing the effect of nickel chloride on the conditionally defective expression of the v-mos transforming gene in normal rat kidney cells infected with the Murine sarcoma virus mutant ts110 (MuSVts110) retrovirus. MuSVts110 contains an out-of-frame gag gene-mos gene junction that prevents the expression of the v-mos gene at the nonpermissive temperature (39 degrees C). In MuSVts110-infected cells (6m2 cells) grown at 33 degrees C, however, this defect can be suppressed by a splicing event that restores the mos reading frame, allowing the expression of a gag-mos fusion protein which induces the transformed phenotype. The capacity to splice the viral transcript at 33 degrees C, but not at 39 degrees C, is an intrinsic property of the viral RNA. This property allowed us to target the MuSVts110 genome using a positive selection scheme whereby nickel was used to induce genetic changes which resulted in expression of the transformed phenotype at 39 degrees C. We treated 6m2 cells with NiCl2 and isolated foci consisting of cells which had reverted to the transformed phenotype at 39 degrees C. We found that brief nickel treatment increased the reversion frequency of 6m2 cells grown at 39 degrees C sevenfold over the spontaneous reversion frequency. The nickel-induced revertants displayed the following heritable characteristics: They stably maintained the transformed phenotype at 39 degrees C; unlike the MuSVts110 RNA in 6m2 cells, the nickel-induced revertant viral RNA could be spliced efficiently at 39 degrees C; as a consequence of the enhanced accumulation of spliced viral RNA, the nickel-induced revertants produced substantial amounts of the transforming v-mos protein P85gag-mos at 39 degrees C; the nickel-induced revertant P85gag-mos serine kinase, like the parental 6m2 P85gag-mos kinase, was found to be rapidly inactivated at 39 degrees C; however, in the nickel-induced revertants, overproduction of P85gag-mos allowed the transformed state to be maintained; and even though viral RNA processing was much changed, no rearrangements of the viral DNA in the nickel-induced revertant cells were detected by partial restriction analysis.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Maternal and Fetal Exposure to Four Carcinogenic Environmental Metals;Biomedical and Environmental Sciences;2010-12
2. Occupational Toxicology of Nickel and Nickel Compounds;Journal of Environmental Pathology, Toxicology and Oncology;2009
3. DNA-damage induction by eight metal compounds in TK6 human lymphoblastoid cells: Results obtained with the alkaline Comet assay;Mutation Research/Genetic Toxicology and Environmental Mutagenesis;2008-06
4. Nickel carcinogenesis;Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis;2003-12-10
5. Nickel essentiality, toxicity, and carcinogenicity;Critical Reviews in Oncology/Hematology;2002-04