Cloning and characterization of the Escherichia coli K-12 rfa-2 (rfaC) gene, a gene required for lipopolysaccharide inner core synthesis

Author:

Chen L1,Coleman W G1

Affiliation:

1. Section on Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892.

Abstract

A genetically defined mutation, designated rfa-2, results in altered lipopolysaccharide (LPS) biosynthesis. rfa-2 mutants produce a core-defective LPS that contains lipid A and a single sugar moiety, 2-keto-3-deoxyoctulosonic acid, in the LPS core region. Such LPS core-defective or deep-rough (R) mutant structures were previously designated chemotype Re. Phenotypically, rfa-2 mutants exhibit increased permeability to a number of hydrophilic and hydrophobic agents. By restriction analyses and complementation studies, we clearly defined the rfa-2 gene on a 1,056-bp AluI-DraI fragment. The rfa-2 gene and the flanking rfa locus regions were completely sequenced. Additionally, the location of the rfa-2 gene on the physical map of the Escherichia coli chromosome was determined. The rfa-2 gene encodes a 36,000-dalton polypeptide in an in vivo expression system. N-terminal analysis of the purified rfa-2 gene product confirmed the first 24 amino acid residues as deduced from the nucleotide sequence of the rfa-2 gene coding region. By interspecies complementation, a Salmonella typhimurium rfaC mutant (LPS chemotype Re) is transformed with the E. coli rfa-2+ gene, and the transformant is characterized by wild-type sensitivity to novobiocin (i.e., uninhibited growth at 600 micrograms of novobiocin per ml) and restoration of the ability to synthesize wild-type LPS structures. On the basis of the identity and significant similarity of the rfa-2 gene sequence and its product to the recently defined (D. M. Sirisena, K. A. Brozek, P. R. MacLachlan, K. E. Sanderson, and C. R. H. Raetz, J. Biol. Chem. 267:18874-18884, 1992), the S. typhimurium rfaC gene sequence and its product (heptosyltransferase 1), the E. coli K-12 rfa-2 locus will be designated rfaC.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3