Rapid and Direct Quantification of Viable Candida Species in Whole Blood by Use of Immunomagnetic Separation and Solid-Phase Cytometry

Author:

Vanhee Lies M. E.1,Meersseman Wouter2,Lagrou Katrien3,Maertens Johan4,Nelis Hans J.1,Coenye Tom1

Affiliation:

1. Laboratory of Pharmaceutical Microbiology, Ghent University, Harelbekestraat 72, B-9000, Ghent, Belgium

2. Medical Intensive Care Unit, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium

3. Department of Medical Diagnostic Sciences, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium

4. Department of Hematology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium

Abstract

ABSTRACT Candida species are a common source of nosocomial bloodstream infections in critically ill patients. The sensitivity of the traditional diagnostic procedure based on blood culture is variable, and it usually takes 2 to 4 days before growth of Candida species is detected. We developed a 4-h method for the quantification of Candida species in blood, combining immunomagnetic separation (IMS) with solid-phase cytometry (SPC) using viability labeling. Additionally, Candida albicans cells could be identified in real time by using fluorescent in situ hybridization. By analysis of spiked blood samples, our method was shown to be sensitive and specific, with a low detection limit (1 cell/ml of blood). In a proof-of-concept study, we applied the IMS/SPC method to 16 clinical samples and compared it to traditional blood culture. Our method proved more sensitive than culture (seven samples were positive with IMS/SPC but negative with blood culture), and identification results were in agreement. The IMS/SPC data also suggest that mixed infections might occur frequently, as C. albicans and at least one other Candida species were found in five samples. Additionally, in two cases, high numbers of cells (175 to 480 cells/ml of blood) were associated with an endovascular source of infection.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3