ResDE Two-Component Regulatory System Mediates Oxygen Limitation-Induced Biofilm Formation by Bacillus amyloliquefaciens SQR9

Author:

Zhou Xuan12,Zhang Nan1,Xia Liming1,Li Qing1,Shao Jiahui1,Shen Qirong1,Zhang Ruifu12

Affiliation:

1. Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, People's Republic of China

2. Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China

Abstract

ABSTRACT Efficient biofilm formation and root colonization capabilities facilitate the ability of beneficial plant rhizobacteria to promote plant growth and antagonize soilborne pathogens. Biofilm formation by plant-beneficial Bacillus strains is triggered by environmental cues, including oxygen deficiency, but the pathways that sense these environmental signals and regulate biofilm formation have not been thoroughly elucidated. In this study, we showed that the ResDE two-component regulatory system in the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens strain SQR9 senses the oxygen deficiency signal and regulates biofilm formation. ResE is activated by sensing the oxygen limitation-induced reduction of the NAD + /NADH pool through its PAS domain, stimulating its kinase activity, and resulting in the transfer of a phosphoryl group to ResD. The phosphorylated ResD directly binds to the promoter regions of the qoxABCD and ctaCDEF operons to improve the biosynthesis of terminal oxidases, which can interact with KinB to activate biofilm formation. These results not only revealed the novel regulatory function of the ResDE two-component system but also contributed to the understanding of the complicated regulatory network governing Bacillus biofilm formation. This research may help to enhance the root colonization and the plant-beneficial efficiency of SQR9 and other Bacillus rhizobacteria used in agriculture. IMPORTANCE Bacillus spp. are widely used as bioinoculants for plant growth promotion and disease suppression. The exertion of their plant-beneficial functions is largely dependent on their root colonization, which is closely related to their biofilm formation capabilities. On the other hand, Bacillus is the model bacterium for biofilm study, and the process and molecular network of biofilm formation are well characterized (B. Mielich-Süss and D. Lopez, Environ Microbiol 17:555–565, 2015, https://doi.org/10.1111/1462-2920.12527 ; L. S. Cairns, L. Hobley, and N. R. Stanley-Wall, Mol Microbiol 93:587–598, 2014, https://doi.org/10.1111/mmi.12697 ; H. Vlamakis, C. Aguilar, R. Losick, and R. Kolter, Genes Dev 22:945–953, 2008, https://doi.org/10.1101/gad.1645008 ; S. S. Branda, A. Vik, L. Friedman, and R. Kolter, Trends Microbiol 13:20–26, 2005, https://doi.org/10.1016/j.tim.2004.11.006 ; C. Aguilar, H. Vlamakis, R. Losick, and R. Kolter, Curr Opin Microbiol 10:638–643, 2007, https://doi.org/10.1016/j.mib.2007.09.006 ; S. S. Branda, J. E. González-Pastor, S. Ben-Yehuda, R. Losick, and R. Kolter, Proc Natl Acad Sci U S A 98:11621–11626, 2001, https://doi.org/10.1073/pnas.191384198 ). However, the identification and sensing of environmental signals triggering Bacillus biofilm formation need further research. Here, we report that the oxygen deficiency signal inducing Bacillus biofilm formation is sensed by the ResDE two-component regulatory system. Our results not only revealed the novel regulatory function of the ResDE two-component regulatory system but also identified the sensing system of a biofilm-triggering signal. This knowledge can help to enhance the biofilm formation and root colonization of plant-beneficial Bacillus strains and also provide new insights of bacterial biofilm formation regulation.

Funder

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3