DNA Damage Is a Prerequisite for p53-Mediated Proteasomal Degradation of HIF-1α in Hypoxic Cells and Downregulation of the Hypoxia Marker Carbonic Anhydrase IX

Author:

Kaluzová Milota12,Kaluz Stefan12,Lerman Michael I.3,Stanbridge Eric J.1

Affiliation:

1. Department of Microbiology and Molecular Genetics, College of Medicine, University of California at Irvine, Irvine, California 92717

2. Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic

3. and Laboratory of Immunobiology, National Cancer Institute at Frederick, Frederick, Maryland 21701

Abstract

ABSTRACT We investigated the relationship between the tumor suppressor p53 and the hypoxia-inducible factor-1 (HIF-1)-dependent expression of the hypoxia marker, carbonic anhydrase IX (CAIX). MCF-7 (wt p53) and Saos-2 (p53-null) cells displayed similar induction of CAIX expression and CA9 promoter activity under hypoxic conditions. Activation of p53 by the DNA damaging agent mitomycin C (MC) was accompanied by a potent repression of CAIX expression and the CA9 promoter in MCF-7 but not in Saos-2 cells. The activated p53 mediated increased proteasomal degradation of HIF-1α protein, resulting in considerably lower steady-state levels of HIF-1α protein in hypoxic MCF-7 cells but not in Saos-2 cells. Overexpression of HIF-1α relieved the MC-induced repression in MCF-7 cells, confirming regulation at the HIF-1α level. Similarly, CA9 promoter activity was downregulated by MC in HCT 116 p53 +/+ but not the isogenic p53 −/− cells. Activated p53 decreased HIF-1α protein levels by accelerated proteasome-dependent degradation without affecting significantly HIF-1α transcription. In summary, our results demonstrate that the presence of wtp53 under hypoxic conditions has an insignificant effect on the stabilization of HIF-1α protein and HIF-1-dependent expression of CAIX. However, upon activation by DNA damage, wt p53 mediates an accelerated degradation of HIF-1α protein, resulting in reduced activation of CA9 transcription and, correspondingly, decreased levels of CAIX protein. A model outlining the quantitative relationship between p53, HIF-1α, and CAIX is presented.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3