Affiliation:
1. Genome Instability Section, Genetics & Molecular Biology Branch
2. Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455
3. Cytogenetic and Confocal Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
Abstract
ABSTRACT
Ku86 plays a key role in nonhomologous end joining in organisms as evolutionarily disparate as bacteria and humans. In eukaryotic cells, Ku86 has also been implicated in the regulation of telomere length although the effect of Ku86 mutations varies considerably between species. Indeed, telomeres either shorten significantly, shorten slightly, remain unchanged, or lengthen significantly in budding yeast, fission yeast, chicken cells, or plants, respectively, that are null for Ku86 expression. Thus, it has been unclear which model system is most relevant for humans. We demonstrate here that the functional inactivation of even a single allele of Ku86 in human somatic cells results in profound telomere loss, which is accompanied by an increase in chromosomal fusions, translocations, and genomic instability. Together, these experiments demonstrate that Ku86, separate from its role in nonhomologous end joining, performs the additional function in human somatic cells of suppressing genomic instability through the regulation of telomere length.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology