Role for Nhp6, Gcn5, and the Swi/Snf Complex in Stimulating Formation of the TATA-Binding Protein-TFIIA-DNA Complex

Author:

Biswas Debabrata1,Imbalzano Anthony N.2,Eriksson Peter1,Yu Yaxin1,Stillman David J.1

Affiliation:

1. Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah

2. Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts

Abstract

ABSTRACT The TATA-binding protein (TBP), TFIIA, and TFIIB interact with promoter DNA to form a complex required for transcriptional initiation, and many transcriptional regulators function by either stimulating or inhibiting formation of this complex. We have recently identified TBP mutants that are viable in wild-type cells but lethal in the absence of the Nhp6 architectural transcription factor. Here we show that many of these TBP mutants were also lethal in strains with disruptions of either GCN5 , encoding the histone acetyltransferase in the SAGA complex, or SWI2 , encoding the catalytic subunit of the Swi/Snf chromatin remodeling complex. These synthetic lethalities could be suppressed by overexpression of TOA1 and TOA2 , the genes encoding TFIIA. We also used TFIIA mutants that eliminated in vitro interactions with TBP. These viable TFIIA mutants were lethal in strains lacking Gcn5, Swi2, or Nhp6. These lethalities could be suppressed by overexpression of TBP or Nhp6, suggesting that these coactivators stimulate formation of the TBP-TFIIA-DNA complex. In vitro studies have previously shown that TBP binds very poorly to a TATA sequence within a nucleosome but that Swi/Snf stimulates binding of TBP and TFIIA. In vitro binding experiments presented here show that histone acetylation facilitates TBP binding to a nucleosomal binding site and that Nhp6 stimulates formation of a TBP-TFIIA-DNA complex. Consistent with the idea that Nhp6, Gcn5, and Swi/Snf have overlapping functions in vivo, nhp6a nhp6b gcn5 mutants had a severe growth defect, and mutations in both nhp6a nhp6b swi2 and gcn5 swi2 strains were lethal.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3