The replication origin decision point is a mitogen-independent, 2-aminopurine-sensitive, G1-phase event that precedes restriction point control

Author:

Wu J R1,Gilbert D M1

Affiliation:

1. Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse, New York 13210, USA.

Abstract

At a distinct point during G1 phase (the origin decision point [ODP]), Chinese hamster ovary (CHO) cell nuclei experience a transition (origin choice) that is required for specific recognition of the dihydrofolate reductase (DHFR) origin locus by Xenopus egg extracts. We have investigated the relationship between the ODP and progression of CHO cells through G1 phase. Selection of the DHFR origin at the ODP was rapidly inhibited by treatment of early G1-phase cells with the protein kinase inhibitor 2-aminopurine (2-AP). Inhibition of the ODP required administration of 2-AP at least 3 h prior to phosphorylation of the retinoblastoma tumor suppressor protein (Rb) and the restriction point (R point). Cells deprived of either serum or isoleucine from metaphase throughout early G1 phase acquired the capacity to replicate in Xenopus egg extract (replication licensing) and subsequently passed through the ODP on the same schedule as cells cultured in complete growth medium. After growth arrest at the R point with hypophosphorylated Rb protein, serum- or isoleucine-deprived cells experienced a gradual loss of replication licensing. However, recognition of the DHFR origin by Xenopus egg cytosol remained stable in growth-arrested cells until the point at which all nuclei had lost the capacity to initiate replication. These results provide evidence that the ODP requires a mitogen-independent protein kinase that is activated after replication licensing and prior to R-point control.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3