Evidence for a Second Nitrate Reductase Activity That Is Distinct from the Respiratory Enzyme in Salmonella typhimurium

Author:

Barrett Ericka L.1,Riggs Daniel L.1

Affiliation:

1. Department of Food Science and Technology, University of California, Davis, California 95616

Abstract

Significant nitrate reductase activity was detected in mutants of Salmonella typhimurium which mapped at or near chlC and which were incapable of growth with nitrate as electron acceptor. The same mutants were sensitive to chlorate and performed sufficient nitrate reduction to permit anaerobic growth with nitrate as the sole nitrogen source in media containing glucose. The mutant nitrate-reducing protein did not migrate with the wild-type nitrate reductase in polyacrylamide electrophoretic gels. Studies of the electrophoretic mobility in gels of different polyacrylamide concentration revealed that the wild-type and mutant nitrate reductases differed significantly in both size and charge. The second enzyme also differed from the wild-type major enzyme in its response to repression by low pH and its lack of response to repression by glucose. The same mutants were found to be derepressed for nitrite reductase and for a cytochrome with a maximal reduced absorbance at 555 nm at 25°C. This cytochrome was not detected in preparations of the wild type grown under the same conditions. Extracts of these mutants contained normal amounts of the b -type cytochromes which, in the wild type, were associated with nitrate reductase and formate dehydrogenase, respectively, although they could not mediate the oxidation of these cytochromes with nitrate. They were capable of oxidizing the derepressed 555-nm peak cytochrome with nitrate. It is suggested that these mutants synthesize a nitrate-reducing enzyme which is distinct from the chlC gene product and which is repressed in the wild type during anaerobic growth with nitrate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3