NADH as Donor

Author:

Friedrich Thorsten1,Pohl Thomas

Affiliation:

1. Institute of Organic Chemistry and Biochemistry, Albert-Ludwigs-University, Albertstrasse 21, 79104 Freiburg, Germany

Abstract

The number of NADH dehydrogenases and their role in energy transduction in Escherchia coli have been under debate for a long time. Now it is evident that E. coli possesses two respiratory NADH dehydrogenases, or NADH:ubiquinone oxidoreductases, that have traditionally been called NDH-I and NDH-II. This review describes the properties of these two NADH dehydrogenases, focusing on the mechanism of the energy converting NADH dehydrogenase as derived from the high resolution structure of the soluble part of the enzyme. In E. coli , complex I operates in aerobic and anaerobic respiration, while NDH-II is repressed under anaerobic growth conditions. The insufficient recycling of NADH most likely resulted in excess NADH inhibiting tricarboxylic acid cycle enzymes and the glyoxylate shunt. Salmonella enterica serovar Typhimurium complex I mutants are unable to activate ATP-dependent proteolysis under starvation conditions. NDH-II is a single subunit enzyme with a molecular mass of 47 kDa facing the cytosol. Despite the absence of any predicted transmembrane segment it has to be purified in the presence of detergents, and the activity of the preparation is stimulated by an addition of lipids.

Publisher

American Society for Microbiology

Subject

Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3