Cell-to-Cell Signaling in Escherichia coli and Salmonella

Author:

Kendall Melissa M.1,Sperandio Vanessa2

Affiliation:

1. Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908

2. Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390

Abstract

Bacteria must be able to respond rapidly to changes in the environment to survive. One means of coordinating gene expression relies on tightly regulated and complex signaling systems. One of the first signaling systems that was described in detail is quorum sensing (QS). During QS, a bacterial cell produces and secretes a signaling molecule called an autoinducer (AI). As the density of the bacterial population increases, so does the concentration of secreted AI molecules, thereby allowing a bacterial species to coordinate gene expression based on population density. Subsequent studies have demonstrated that bacteria are also able to detect signal molecules produced by other species of bacteria as well as hormones produced by their mammalian hosts. This type of signaling interaction has been termed cell-to-cell signaling because it does not rely on a threshold concentration of bacterial cells. This review discusses the three main types of cell-to-cell signaling mechanisms used by Escherichia coli and Salmonella : the LuxR process, in which E. coli and Salmonella detect signals produced by other species of bacteria; the LuxS/AI-2 system, in which E. coli and Salmonella participate in intra- and interspecies signaling; and the AI-3/epinephrine/norepinephrine system, in which E. coli and Salmonella recognize self-produced AI, signal produced by other microbes, and/or the human stress hormones epinephrine and/or norepinephrine.

Publisher

American Society for Microbiology

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3