Affiliation:
1. Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
2. Department of Biology I—Microbiology, University of Munich, Maria Ward Strasse 1a, 80638 Munich, Germany
Abstract
During fermentative growth,
Escherichia coli
degrades carbohydrates via the glycolytic route into two pyruvate molecules. Pyruvate can be reduced to lactate or nonoxidatively cleaved by pyruvate formate lyase into acetyl-coenzyme A (acetyl-CoA) and formate. Acetyl-CoA can be utilized for energy conservation in the phosphotransacetylase (PTA) and acetate kinase (ACK) reaction sequence or can serve as an acceptor for reducing equivalents gathered during pyruvate formation, through the action of alcohol dehydrogenase (AdhE). Formic acid is strongly acidic and has a redox potential of −420 mV under standard conditions and therefore can be classified as a high-energy compound. Its disproportionation into CO
2
and molecular hydrogen (E
m
,7
−420 mV) via the formate hydrogenlyase (FHL) system is therefore of high selective value. The FHL reaction involves the participation of at least seven proteins, most of which are metalloenzymes, with requirements for iron, molybdenum, nickel, or selenium. Complex auxiliary systems incorporate these metals. Reutilization of the hydrogen evolved required the evolution of H
2
oxidation systems, which couple the oxidation process to an appropriate energy-conserving terminal reductase.
E. coli
has two hydrogen-oxidizing enzyme systems. Finally, fermentation is the "last resort" of energy metabolism, since it gives the minimal energy yield when compared with respiratory processes. Consequently, fermentation is used only when external electron acceptors are absent. This has necessitated the establishment of regulatory cascades, which ensure that the metabolic capability is appropriately adjusted to the physiological condition. Here we review the genetics, biochemistry, and regulation of hydrogen metabolism and its hydrogenase maturation system.
Publisher
American Society for Microbiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献