Biosynthesis of Proline

Author:

Csonka Laszlo N.1,Leisinger Thomas2

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392

2. Institut für Mikrobiologie, Wolfgang Pauli Strasse 10, CH-8093 Zürich, Switzerland

Abstract

Proline was among the last biosynthetic precursors to have its biosynthetic pathway unraveled. This review recapitulates the findings on the biosynthesis and transport of proline. Glutamyl kinase (GK) catalyzes the ATP-dependent phosphorylation of L-glutamic acid. Purification of γ-GK from Escherichia coli was facilitated by the expression of the proB and proA genes from a high-copy-number plasmid and the development of a specific coupled assay based on the NADPH-dependent reduction of GP by γ-glutamyl phosphate reductase (GPR). GPR catalyzes the NADPH-dependent reduction of GP to GSA. Site directed mutagenesis was used to identify residues that constitute the active site of E. coli GK. This analysis indicated that there is an overlap between the binding sites for glutamate and the allosteric inhibitor proline, suggesting that proline competes with the binding of glutamate. The review also summarizes the genes involved in the metabolism of proline in E. coli and Salmonella . Among the completed genomic sequences of Enterobacteriaceae , genes specifying all three proline biosynthetic enzymes can be discerned in E. coli , Shigella , Salmonella enterica , Serratia marcescens , Erwinia carotovora , Yersinia , Photorhabdus luminescens , and Sodalis glossinidius strain morsitans. The intracellular proline concentration increases with increasing external osmolality in proline-overproducing mutants. This apparent osmotic regulation of proline accumulation in the overproducing strains may be the result of increased retention or recapture of proline, achieved by osmotic stimulation of the ProP or ProU proline transport systems. A number of proline analogs can be incorporated into proteins in vivo or in vitro.

Publisher

American Society for Microbiology

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3