Biosynthesis of Cysteine

Author:

Kredich Nicholas M.1

Affiliation:

1. Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710

Abstract

The synthesis of L-cysteine from inorganic sulfur is the predominant mechanism by which reduced sulfur is incorporated into organic compounds. L-cysteineis used for protein and glutathione synthesis and serves as the primary source of reduced sulfur in L-methionine, lipoic acid, thiamin, coenzyme A (CoA), molybdopterin, and other organic molecules. Sulfate and thiosulfate uptake in E. coli and serovar Typhimurium are achieved through a single periplasmic transport system that utilizes two different but similar periplasmic binding proteins. Kinetic studies indicate that selenate and selenite share a single transporter with sulfate, but molybdate also has a separate transport system. During aerobic growth, the reduction of sulfite to sulfide is catalyzed by NADPH-sulfite reductase (SiR), and serovar Typhimurium mutants lacking this enzyme accumulate sulfite from sulfate, implying that sulfite is a normal intermediate in assimilatory sulfate reduction. L-Cysteine biosynthesis in serovar Typhimurium and E. coli ceases almost entirely when cells are grown on L-cysteine or L-cystine, owing to a combination of end product inhibition of serine transacetylase by L-cysteine and a gene regulatory system known as the cysteine regulon, wherein genes for sulfate assimilation and alkanesulfonate utilization are expressed only when sulfur is limiting. In vitro studies with the cysJIH , cysK , and cysP promoters have confirmed that they are inefficient at forming transcription initiation complexes without CysB and N-acetyl-L-serine. Activation of the tauA and ssuE promoters requires Cbl. It has been proposed that the three serovar Typhimurium anaerobic reductases for sulfite, thiosulfate, and tetrathionate may function primarily in anaerobic respiration.

Publisher

American Society for Microbiology

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3