In VitroActivities of Antibiotics and Antimicrobial Cationic Peptides Alone and in Combination against Methicillin-Resistant Staphylococcus aureus Biofilms

Author:

Mataraci Emel,Dosler Sibel

Abstract

ABSTRACTMethicillin-resistantStaphylococcus aureus(MRSA) strains are most often found as hospital- and community-acquired infections. The danger of MRSA infections results from not only the emergence of multidrug resistance but also the occurrence of bacteria that form strong biofilms. We investigated thein vitroactivities of antibiotics (daptomycin, linezolid, teichoplanine, azithromycin, and ciprofloxacin) and antimicrobial cationic peptides {AMPs; indolicidin, CAMA [cecropin (1-7)–melittin A (2-9) amide], and nisin} alone or in combination against MRSA ATCC 43300 biofilms. The MICs and minimum biofilm eradication concentrations (MBECs) were determined by the broth microdilution technique. Antibiotic and AMP combinations were assessed using the checkerboard technique. For MRSA planktonic cells, MICs of antibiotics and AMPs ranged between 0.125 and 512 and 8 and 16 mg/liter, respectively, and the MBEC values were between 512 and 5,120 and 640 mg/liter, respectively. With a fractional inhibitory concentration of ≤0.5 as the borderline, synergistic interactions against MRSA biofilms were frequent with almost all antibiotic-antibiotic and antibiotic-AMP combinations. Against planktonic cells, they generally had an additive effect. No antagonism was observed. All of the antibiotics, AMPs, and their combinations were able to inhibit the attachment of bacteria at 1/10 MIC and biofilm formation at 1× MIC. Biofilm-associated MRSA was not affected by therapeutically achievable concentrations of antimicrobial agents. Use of a combination of antimicrobial agents can provide a synergistic effect, which rapidly enhances antibiofilm activity and may help prevent or delay the emergence of resistance. AMPs seem to be good candidates for further investigations in the treatment of MRSA biofilms, alone or in combination with antibiotics.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3