Exploring Environmental Control of Cyclic di-GMP Signaling in Vibrio cholerae by Using theEx VivoLysate Cyclic di-GMP Assay (TELCA)

Author:

Koestler Benjamin J.,Waters Christopher M.

Abstract

ABSTRACTVibrio choleraesenses its environment, including the surrounding bacterial community, using both the second messenger cyclic di-GMP (c-di-GMP) and quorum sensing (QS) to regulate biofilm formation and other bacterial behaviors. Cyclic di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes.V. choleraeencodes a complex network of 61 enzymes predicted to mediate changes to the levels of c-di-GMP in response to extracellular signals, and the transcription of many of these enzymes is influenced by QS. Because of the complexity of the c-di-GMP signaling system inV. cholerae, it is difficult to determine if modulation of intracellular c-di-GMP in response to different stimuli is driven primarily by changes in c-di-GMP synthesis or hydrolysis. Here, we describe a novel method, named theex vivolysate c-di-GMP assay (TELCA), that systematically measures total DGC and PDE cellular activity. We show thatV. choleraegrown in different environments exhibits significantly different intracellular levels of c-di-GMP, and we used TELCA to determine that these differences correspond to changes in both c-di-GMP synthesis and hydrolysis. Furthermore, we show that the increased concentration of c-di-GMP at low cell density is primarily due to increased DGC activity due to the DGC CdgA. Our findings highlight the idea that modulation of both total DGC and PDE activity alters the intracellular concentration of c-di-GMP, and we present a new method that is widely applicable to the systematic analysis of complex c-di-GMP signaling networks.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3