Author:
Koestler Benjamin J.,Waters Christopher M.
Abstract
ABSTRACTVibrio choleraesenses its environment, including the surrounding bacterial community, using both the second messenger cyclic di-GMP (c-di-GMP) and quorum sensing (QS) to regulate biofilm formation and other bacterial behaviors. Cyclic di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes.V. choleraeencodes a complex network of 61 enzymes predicted to mediate changes to the levels of c-di-GMP in response to extracellular signals, and the transcription of many of these enzymes is influenced by QS. Because of the complexity of the c-di-GMP signaling system inV. cholerae, it is difficult to determine if modulation of intracellular c-di-GMP in response to different stimuli is driven primarily by changes in c-di-GMP synthesis or hydrolysis. Here, we describe a novel method, named theex vivolysate c-di-GMP assay (TELCA), that systematically measures total DGC and PDE cellular activity. We show thatV. choleraegrown in different environments exhibits significantly different intracellular levels of c-di-GMP, and we used TELCA to determine that these differences correspond to changes in both c-di-GMP synthesis and hydrolysis. Furthermore, we show that the increased concentration of c-di-GMP at low cell density is primarily due to increased DGC activity due to the DGC CdgA. Our findings highlight the idea that modulation of both total DGC and PDE activity alters the intracellular concentration of c-di-GMP, and we present a new method that is widely applicable to the systematic analysis of complex c-di-GMP signaling networks.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献