A Single Regulator Mediates Strategic Switching between Attachment/Spread and Growth/Virulence in the Plant Pathogen Ralstonia solanacearum

Author:

Khokhani Devanshi1,Lowe-Power Tiffany M.12,Tran Tuan Minh1,Allen Caitilyn1

Affiliation:

1. Department of Plant Pathology, University of Wisconsin—Madison, Madison, Wisconsin, USA

2. Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA

Abstract

ABSTRACT The PhcA virulence regulator in the vascular wilt pathogen Ralstonia solanacearum responds to cell density via quorum sensing. To understand the timing of traits that enable R. solanacearum to establish itself inside host plants, we created a Δ phcA mutant that is genetically locked in a low-cell-density condition. Comparing levels of gene expression of wild-type R. solanacearum and the Δ phcA mutant during tomato colonization revealed that the PhcA transcriptome includes an impressive 620 genes (>2-fold differentially expressed; false-discovery rate [FDR], ≤0.005). Many core metabolic pathways and nutrient transporters were upregulated in the Δ phcA mutant, which grew faster than the wild-type strain in tomato xylem sap and on dozens of specific metabolites, including 36 found in xylem. This suggests that PhcA helps R. solanacearum to survive in nutrient-poor environmental habitats and to grow rapidly during early pathogenesis. However, after R. solanacearum reaches high cell densities in planta , PhcA mediates a trade-off from maximizing growth to producing costly virulence factors. R. solanacearum infects through roots, and low-cell-density-mode-mimicking Δ phcA cells attached to tomato roots better than the wild-type cells, consistent with their increased expression of several adhesins. Inside xylem vessels, Δ phcA cells formed aberrantly dense mats. Possibly as a result, the mutant could not spread up or down tomato stems as well as the wild type. This suggests that aggregating improves R. solanacearum survival in soil and facilitates infection and that it reduces pathogenic fitness later in disease. Thus, PhcA mediates a second strategic switch between initial pathogen attachment and subsequent dispersal inside the host. PhcA helps R. solanacearum optimally invest resources and correctly sequence multiple steps in the bacterial wilt disease cycle. IMPORTANCE Ralstonia solanacearum is a destructive soilborne crop pathogen that wilts plants by colonizing their water-transporting xylem vessels. It produces its costly virulence factors only after it has grown to a high population density inside a host. To identify traits that this pathogen needs in other life stages, we studied a mutant that mimics the low-cell-density condition. This mutant (the Δ phcA mutant) cannot sense its own population density. It grew faster than and used many nutrients not available to the wild-type bacterium, including metabolites present in tomato xylem sap. The mutant also attached much better to tomato roots, and yet it failed to spread once it was inside plants because it was trapped in dense mats. Thus, PhcA helps R. solanacearum succeed over the course of its complex life cycle by ensuring avid attachment to plant surfaces and rapid growth early in disease, followed by high virulence and effective dispersal later in disease.

Funder

USDA Floral and Nursery Crops Research Initiative

U. Wisconsin-Madison College of Agricultural and Life Sciences

USDA-NIFA Predoctoral Fellowship

National Science Foundation

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3