Denitrification and Nitrogen Fixation Dynamics in the Area Surrounding an Individual Ghost Shrimp (Neotrypaea californiensis) Burrow System

Author:

Bertics Victoria J.1,Sohm Jill A.1,Magnabosco Cara1,Ziebis Wiebke1

Affiliation:

1. University of Southern California, Department of Biological Sciences and Wrigley Institute for Environmental Studies, Los Angeles, California, USA

Abstract

ABSTRACT Bioturbated sediments are thought of as areas of increased denitrification or fixed-nitrogen (N) loss; however, recent studies have suggested that not all N may be lost from these environments, with some N returning to the system via microbial dinitrogen (N 2 ) fixation. We investigated denitrification and N 2 fixation in an intertidal lagoon (Catalina Harbor, CA), an environment characterized by bioturbation by thalassinidean shrimp ( Neotrypaea californiensis ). Field studies were combined with detailed measurements of denitrification and N 2 fixation surrounding a single ghost shrimp burrow system in a narrow aquarium (15 cm by 20 cm by 5 cm). Simultaneous measurements of both activities were performed on samples taken within a 1.5-cm grid for a two-dimensional illustration of their intensity and distribution. These findings were then compared with rate measurements performed on bulk environmental sediment samples collected from the lagoon. Results for the aquarium indicated that both denitrification and N 2 fixation have a patchy distribution surrounding the burrow, with no clear correlation to each other, sediment depth, or distance from the burrow. Field denitrification rates were, on average, lower in a bioturbated region than in a seemingly nonbioturbated region; however, replicates showed very high variability. A comparison of denitrification field results with previously reported N 2 fixation rates from the same lagoon showed that in the nonbioturbated region, depth-integrated (10 cm) denitrification rates were higher than integrated N 2 fixation rates (∼9 to 50 times). In contrast, in the bioturbated sediments, depending on the year and bioturbation intensity, some (∼6.2%) to all of the N lost via denitrification might be accounted for via N 2 fixation.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3