Extremely Low Exposure of a Community to Severe Acute Respiratory Syndrome Coronavirus: False Seropositivity due to Use of Bacterially Derived Antigens

Author:

Leung D. T. M.1,van Maren W. W. C.12,Chan F. K. L.3,Chan W. S.4,Lo A. W. I.4,Ma C. H.1,Tam F. C. H.1,To K. F.4,Chan P. K. S.56,Sung J. J. Y.36,Lim P. L.1

Affiliation:

1. Clinical Immunology Unit, The Chinese University of Hong Kong, Hong Kong

2. University of Utrecht, Utrecht, The Netherlands

3. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong

4. Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong

5. Department of Microbiology, The Chinese University of Hong Kong, Hong Kong

6. Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong

Abstract

ABSTRACT Estimates of seropositivity to a new infectious agent in a community are useful to public health. For severe acute respiratory syndrome (SARS), the figures are conflicting. Herein, we screened 12,000 people in a community stricken by SARS 10 months previously and found 53 individuals (0.44%) who had immunoglobulin G antibodies to the SARS coronavirus (SARS-CoV) nucleocapsid (N) produced in bacteria. However, only seven of these (group 1) had sera which also reacted with the native N antigen expressed in SARS-CoV-infected Vero cells, N-transfected 293T cells, and tissues of infected SARS patients. Of these, six individuals had had SARS previously. The remaining person, as well as the 46 other individuals (group 2), were healthy and had no history of SARS. Group 1 antibodies recognized epitopes located slightly differently in N from those of group 2 antibodies, and a mouse hybridoma antibody resembling the former type was generated. Unusually, group 2 antibodies appeared to recognize cross-reactive bacterial epitopes that presumably were posttranslationally modified in eukaryotes and hence were probably not induced by SARS-CoV or related coronaviruses but rather by bacteria. The N antigen is thus highly unique. The extremely low rate (0.008%) of asymptomatic SARS infection found attests to the high virulence of the SARS-CoV virus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3