Varicella-Zoster Virus Immediate-Early 63 Protein Interacts with Human Antisilencing Function 1 Protein and Alters Its Ability To Bind Histones H3.1 and H3.3

Author:

Ambagala Aruna P.1,Bosma Trent1,Ali Mir A.1,Poustovoitov Maxim2,Chen Jason J.3,Gershon Michael D.3,Adams Peter D.2,Cohen Jeffrey I.1

Affiliation:

1. Laboratory of Clinical Infectious Diseases, Building 10, Room 11N234, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892

2. Department of Basic Science, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111

3. Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032

Abstract

ABSTRACT Varicella-zoster virus (VZV) immediate-early 63 protein (IE63) is abundantly expressed during both acute infection in vitro and latent infection in human ganglia. Using the yeast two-hybrid system, we found that VZV IE63 interacts with human antisilencing function 1 protein (ASF1). ASF1 is a nucleosome assembly factor which is a member of the H3/H4 family of histone chaperones. IE63 coimmunoprecipitated and colocalized with ASF1 in transfected cells expressing IE63 and in VZV-infected cells. IE63 also colocalized with ASF1 in both lytic and latently VZV-infected enteric neurons. ASF1 exists in two isoforms, ASF1a and ASF1b, in mammalian cells. IE63 preferentially bound to ASF1a, and the amino-terminal 30 amino acids of ASF1a were critical for its interaction with IE63. VZV IE63 amino acids 171 to 208 and putative phosphorylation sites of IE63, both of which are critical for virus replication and latency in rodents, were important for the interaction of IE63 with ASF1. Finally, we found that IE63 increased the binding of ASF1 to histone H3.1 and H3.3, which suggests that IE63 may help to regulate levels of histones in virus-infected cells. Since ASF1 mediates eviction and deposition of histones during transcription, the interaction of VZV IE63 with ASF1 may help to regulate transcription of viral or cellular genes during lytic and/or latent infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3