Biotransformation of Explosives by the Old Yellow Enzyme Family of Flavoproteins

Author:

Williams Richard E.1,Rathbone Deborah A.1,Scrutton Nigel S.2,Bruce Neil C.1

Affiliation:

1. Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT

2. Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom

Abstract

ABSTRACT Several independent studies of bacterial degradation of nitrate ester explosives have demonstrated the involvement of flavin-dependent oxidoreductases related to the old yellow enzyme (OYE) of yeast. Some of these enzymes also transform the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). In this work, catalytic capabilities of five members of the OYE family were compared, with a view to correlating structure and function. The activity profiles of the five enzymes differed substantially; no one compound proved to be a good substrate for all five enzymes. TNT is reduced, albeit slowly, by all five enzymes. The nature of the transformation products differed, with three of the five enzymes yielding products indicative of reduction of the aromatic ring. Our findings suggest two distinct pathways of TNT transformation, with the initial reduction of TNT being the key point of difference between the enzymes. Characterization of an active site mutant of one of the enzymes suggests a structural basis for this difference.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3