Humoral and Cell-Mediated Adaptive Immune Responses Are Required for Protection against Burkholderia pseudomallei Challenge and Bacterial Clearance Postinfection

Author:

Healey Gareth D.1,Elvin Stephen J.1,Morton Margaret1,Williamson E. Diane1

Affiliation:

1. DSTL, Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom

Abstract

ABSTRACT Burkholderia pseudomallei , the causative agent of melioidosis, is a gram-negative bacillus endemic to areas of southeast Asia and northern Australia. Presently, there is no licensed vaccine for B. pseudomallei and the organism is refractive to antibiotic therapy. The bacterium is known to survive and multiply inside both phagocytic and nonphagocytic host cells and may be able to spread directly from cell to cell. Current vaccine delivery systems are unlikely to induce the correct immune effectors to stimulate a protective response to the organism. In this study, we have developed a procedure to utilize dendritic cells as a vaccine delivery vector to induce cell-mediated immune responses to B. pseudomallei . Dendritic cells were produced by culturing murine bone marrow progenitor cells in medium containing granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha. Purified dendritic cells were pulsed with heat-killed whole-cell B. pseudomallei and used to immunize syngeneic mice. Strong cellular immune responses were elicited by this immunization method, although antibody responses were low. Booster immunizations of either a second dose of dendritic cells or heat-killed B. pseudomallei were administered to increase the immune response. Immunized animals were challenged with fully virulent B. pseudomallei , and protection was demonstrated in those with strong humoral and cell-mediated immunity. These results indicate the importance of both cell-mediated and humoral immune mechanisms in protection against intracellular pathogens.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3