Cyclosporine Inhibits Mouse Cytomegalovirus Infection via a Cyclophilin-Dependent Pathway Specifically in Neural Stem/Progenitor Cells

Author:

Kawasaki Hideya1,Mocarski Edward S.2,Kosugi Isao1,Tsutsui Yoshihiro1

Affiliation:

1. Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan

2. Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322

Abstract

ABSTRACT The potential of neural stem and progenitor cell (NSPC) transplantation in neurodegenerative disease raises a concern about immunosuppressive agents and opportunistic neurotropic pathogens that may interfere with engraftment. Cytomegalovirus (CMV) is an important opportunistic pathogen infecting the central nervous system, where it may remain latent for life, following transplacental transmission. Cyclosporine (Cs), an immunosuppressive drug used in organ transplantation, where its use is associated with CMV reactivation, suppressed murine CMV (MCMV) infection in cultured NSPCs but not in fibroblasts. This activity of Cs appears to be mediated via cyclophilin (CyP) rather than via calcineurin. First, the calcineurin-specific inhibitor FK506 failed to suppress replication. Second, the CyP-specific inhibitor NIM811 strongly suppressed replication in NSPC. NSPCs maintained in the presence of NIM811 retained viral genomes for several weeks without detectable viral gene expression or obvious deleterious effects. The withdrawal of NIM811 reactivated viral replication, suggesting that the inhibitory mechanism was reversible. Finally, inhibition of endogenous CyP A (CyPA) by small interfering RNA also inhibited replication in NSPCs. These results show that MCMV replication depends upon cellular CyPA pathways in NSPCs (in a specific cell type-dependent fashion), that CyPA plays an important role in viral infection in this cell type, and that inhibition of viral replication via CyP leads to persistence of the viral genome without cell damage. Further, the calcineurin-signaling pathway conferring immunosuppression in T cells does not influence viral replication in a detectable fashion.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3