Affiliation:
1. Department of Experimental Immunology, Landsteiner Laboratory, Sanquin Research, and Center for Infection and Immunity (CINIMA), Academic Medical Center at the University of Amsterdam, Amsterdam, Netherlands
Abstract
ABSTRACT
Human immunodeficiency virus type 1 (HIV-1) has the ability to adapt to the host environment by escaping from host immune responses. We previously observed that escape from humoral immunity, both at the individual and at a population level, coincided with longer variable loops and an increased number of potential N-linked glycosylation sites (PNGS) in the viral envelope glycoprotein (Env) and, in particular, in variable regions 1 and 2 (V1V2). Here, we provide several lines of evidence for the role of V1V2 in the resistance of HIV-1 to neutralizing antibodies. First, we determined that the increasing neutralization resistance of a reference panel of tier-categorized neutralization-sensitive and -resistant HIV-1 variants coincided with a longer V1V2 loop containing more PNGS. Second, an exchange of the different variable regions of Env from a neutralization-sensitive HIV-1 variant into a neutralization-resistant escape variant from the same individual revealed that the V1V2 loop is a strong determinant for sensitivity to autologous-serum neutralization. Third, exchange of the V1V2 loop of neutralization-sensitive HIV-1 variants from historical seroconverters with the V1V2 loop of neutralization-resistant HIV-1 variants from contemporary seroconverters decreased the neutralization sensitivity to CD4-binding site-directed antibodies. Overall, we demonstrate that an increase in the length of the V1V2 loop and/or the number of PNGS in that same region of the HIV-1 envelope glycoprotein is directly involved in the protection of HIV-1 against HIV-specific neutralizing antibodies, possibly by shielding underlying epitopes in the envelope glycoprotein from antibody recognition.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献