Role of PUG1 in Inducible Porphyrin and Heme Transport in Saccharomyces cerevisiae

Author:

Protchenko Olga1,Shakoury-Elizeh Minoo1,Keane Patricia1,Storey Joshua1,Androphy Rachel1,Philpott Caroline C.1

Affiliation:

1. Genetics and Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Rm. 9B-16, Bethesda, Maryland 20892

Abstract

ABSTRACT Unlike pathogenic fungi, the budding yeast Saccharomyces cerevisiae is not efficient at using heme as a nutritional source of iron. Here we report that for this yeast, heme uptake is induced under conditions of heme starvation. Heme synthesis requires oxygen, and yeast grown anaerobically exhibited an increased uptake of hemin. Similarly, a strain lacking aminolevulinate synthase exhibited a sixfold increase in hemin uptake when grown without 2-aminolevulinic acid. We used microarray analysis of cells grown under reduced oxygen tension or reduced intracellular heme conditions to identify candidate genes involved in heme uptake. Surprisingly, overexpression of PUG1 (protoporphyrin uptake gene 1) resulted in reduced utilization of exogenous heme by a heme-deficient strain and, conversely, increased the utilization of protoporphyrin IX. Pug1p was localized to the plasma membrane by indirect immunofluorescence and subcellular fractionation. Strains overexpressing PUG1 exhibited decreased accumulation of [ 55 Fe]hemin but increased accumulation of protoporphyrin IX compared to the wild-type strain. To measure the effect of PUG1 overexpression on intracellular heme pools, we used a CYC1 - lacZ reporter, which is activated in the presence of heme, and we monitored the activity of a heme-containing metalloreductase, Fre1p, expressed from a constitutive promoter. The data from these experiments were consistent with a role for Pug1p in inducible protoporphyrin IX influx and heme efflux.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3