Affiliation:
1. Department of Plant Pathology, The Ohio State University, OARDC, 1680 Madison Avenue, Wooster, Ohio 44691
Abstract
ABSTRACT
Microbial community profiling of samples differing in a specific ecological function, i.e., soilborne plant disease suppression, can be used to mark, recover, and ultimately identify the bacteria responsible for that specific function. Previously, several terminal restriction fragments (TRF) of 16S rRNA genes were statistically associated with damping-off disease suppression. This work presents the development of sequence-based TRF length polymorphism (T-RFLP)-derived molecular markers to direct the identification and isolation of novel bacteria involved in damping-off pathogen suppression. Multiple sequences matching TRF M139 and M141 were cloned and displayed identity to multiple database entries in the genera incertae sedis of the
Burkholderiales
. Sequences matching TRF M148, in contrast, displayed greater sequence diversity. A sequence-directed culturing strategy was developed using M139- and M141-derived markers and media reported to be selective for the genera identified within this group. Using this approach, we isolated and identified novel
Mitsuaria
and
Burkholderia
species with high levels of sequence similarity to the targeted M139 and M141 TRF, respectively. As predicted, these
Mitsuaria
and
Burkholderia
isolates displayed the targeted function by reducing fungal and oomycete plant pathogen growth in vitro and reducing disease severity in infected tomato and soybean seedlings. This work represents the first successful example of the use of T-RFLP-derived markers to direct the isolation of microbes with pathogen-suppressing activities, and it establishes the power of low-cost molecular screening to identify and direct the recovery of functionally important microbes, such as these novel biocontrol strains.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献