Author:
Uren Philip J.,Vo Dat T.,de Araujo Patricia Rosa,Pötschke Rebecca,Burns Suzanne C.,Bahrami-Samani Emad,Qiao Mei,de Sousa Abreu Raquel,Nakaya Helder I.,Correa Bruna R.,Kühnöl Caspar,Ule Jernej,Martindale Jennifer L.,Abdelmohsen Kotb,Gorospe Myriam,Smith Andrew D.,Penalva Luiz O. F.
Abstract
The conserved RNA-binding protein Musashi1 (MSI1) has emerged as a key oncogenic factor in numerous solid tumors, including glioblastoma. However, its mechanism of action has not yet been established comprehensively. To identify its target genes comprehensively and determine the main routes by which it influences glioblastoma phenotypes, we conducted individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP) experiments. We confirmed that MSI1 has a preference for UAG sequences contained in a particular structural context, especially in 3′ untranslated regions. Although numerous binding sites were also identified in intronic sequences, our RNA transcriptome sequencing analysis does not favor the idea that MSI1 is a major regulator of splicing in glioblastoma cells. MSI1 target mRNAs encode proteins that function in multiple pathways of cell proliferation and cell adhesion. Since these associations indicate potentially new roles for MSI1, we investigated its impact on glioblastoma cell adhesion, morphology, migration, and invasion. These processes are known to underpin the spread and relapse of glioblastoma, in contrast to other tumors where metastasis is the main driver of recurrence and progression.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献