Microhomology-Dependent End Joining and Repair of Transposon-Induced DNA Hairpins by Host Factors in Saccharomyces cerevisiae

Author:

Yu Jianhua1,Marshall Kelly1,Yamaguchi Miyuki2,Haber James E.2,Weil Clifford F.1

Affiliation:

1. Department of Agronomy, Purdue University, West Lafayette, Indiana 47907-1150

2. Rosenstiel Cancer Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110

Abstract

ABSTRACT The maize, cut-and-paste transposon Ac/Ds is mobile in Saccharomyces cerevisiae , and DNA sequences of repair products provide strong genetic evidence that hairpin intermediates form in host DNA during this transposition, similar to those formed for V(D)J coding joints in vertebrates. Both DNA strands must be broken for Ac/Ds to excise, suggesting that double-strand break (DSB) repair pathways should be involved in repair of excision sites. In the absence of homologous template, as expected, Ac excisions are repaired by nonhomologous end joining (NHEJ) that can involve microhomologies close to the broken ends. However, unlike repair of endonuclease-induced DSBs, repair of Ac excisions in the presence of homologous template occurs by gene conversion only about half the time, the remainder being NHEJ events. Analysis of transposition in mutant yeast suggests roles for the Mre11/Rad50 complex, SAE2 , NEJ1 , and the Ku complex in repair of excision sites. Separation-of-function alleles of MRE11 suggest that its endonuclease function is more important in this repair than either its exonuclease or Rad50-binding properties. In addition, the interstrand cross-link repair gene PSO2 plays a role in end joining hairpin ends that is not seen in repair of linearized plasmids and may be involved in positioning transposase cleavage at the transposon ends.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3