Affiliation:
1. Departments of Microbiology, Immunology, and Molecular Genetics
2. Graduate Center for Toxicology
3. Radiation Medicine
4. Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
Abstract
ABSTRACT
NF-κB is a heterodimeric transcription activator consisting of the DNA binding subunit p50 and the transactivation subunit p65/RelA. NF-κB prevents cell death caused by tumor necrosis factor (TNF) and other genotoxic insults by directly inducing antiapoptotic target genes. We report here that the tumor suppressor PTEN, which functions as a negative regulator of phosphatidylinositol (PI)-3 kinase/Akt-mediated cell survival pathway, is down regulated by p65 but not by p50. Moreover, a subset of human lung or thyroid cancer cells expressing high levels of endogenous p65 showed decreased expression of PTEN that could be rescued by specific inhibition of the NF-κB pathway with IκB overexpression as well as with small interfering RNA directed against p65. Importantly, TNF, a potent inducer of NF-κB activity, suppressed PTEN gene expression in IKKβ
+/+
cells but not in IKKβ
−/−
cells, which are deficient in the NF-κB activation pathway. These findings indicated that NF-κB activation was necessary and sufficient for inhibition of PTEN expression. The promoter, RNA, and protein levels of PTEN are down-regulated by NF-κB. The mechanism underlying suppression of PTEN expression by NF-κB was independent of p65 DNA binding or transcription function and involved sequestration of limiting pools of transcriptional coactivators CBP/p300 by p65. Restoration of PTEN expression inhibited NF-κB transcriptional activity and augmented TNF-induced apoptosis, indicating a negative regulatory loop involving PTEN and NF-κB. PTEN is, thus, a novel target whose suppression is critical for antiapoptosis by NF-κB.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Reference60 articles.
1. Alcamo, E., J. P. Mizgerd, B. H. Horwitz, R. Bronson, A. A. Beg, M. Scott, C. M. Doerschuk, R. O. Hynes, and D. Baltimore. 2001. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-kappa B in leukocyte recruitment. J. Immunol.167:1592-1600.
2. Beg, A. A., and D. Baltimore. 1996. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science274:782-784.
3. Beg, A. A., W. C. Sha, R. T. Bronson, S. Ghosh, and D. Baltimore. 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature376:167-170.
4. Brognard, J., A. S. Clark, Y. Ni, and P. A. Dennis. 2001. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res.61:3986-3997.
5. Chakraborty, M., S. G. Qiu, K. M. Vasudevan, and V. M. Rangnekar. 2001. Par-4 drives trafficking and activation of Fas and Fasl to induce prostate cancer cell apoptosis and tumor regression. Cancer Res.61:7255-7263.
Cited by
227 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献